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boundary layer occurring in their investigations. The same is true for the numerical investigations of Ref. [12].
For flows with high-temperature gas effects, non-linear breakdown to turbulence has mostly been considered
experimentally, e.g. in Ref. [13] or more recently in Ref. [14]. Still, our knowledge of the non-linear transitional
stages remains very limited.

1.2 Wave Breakdown

As it has been described in Ref. [1], we can distinguish between two general routes of non-linear breakdown:
wave and streak breakdown. Breakdown to turbulence is initiated when the primary flow structure, the wave or
the streak, reaches a large amplitude and creates a new, secondary instability.

In the case of wave breakdown, non-linear waves assume the form of spanwise vortices and are susceptible
to additional instabilities. For streak breakdown, the wall-normal or spanwise gradients of the streamwise
velocity profile initiate a localized shear-layer instability, often leading to a varicose or sinuous motion of the
low-speed streak. In these notes, we will only consider wave breakdown.

The linear amplification of streamwise traveling waves eventually leads to the presence of large-amplitude
waves in the boundary layer. Depending on the flow field under consideration, higher harmonics of these waves
develop and, together with the main wave, form coherent structures. In boundary layers the presence of a
large-amplitude traveling wave only is sufficient to induce secondary instability.

As a result of these so-called primary waves, a weakly non-linear mechanism may become active in the
boundary layer: the unsteady secondary instability. Once this primary perturbation possesses a sufficiently large
amplitude, the growth of oblique secondary waves may be significantly enhanced [10]. Apart from numerical
simulations, secondary instability can be investigated theoretically using Floquet theory.

The secondary instability is independent of the amplitude of the secondary wave, and therefore it is only
weakly non-linear. However, it parametrically depends on the amplitude of the primary wave. The secondary
waves fall into resonance with the primary waves. A characteristic feature of this resonance is the synchroniza-
tion of phase velocities of the primary and secondary waves. The latter adjusts its phase speed to match the one
of the primary wave.

It is convenient to consider a pair of streamwise traveling waves. In a frame of reference moving with
these two primary waves, they may be viewed as vortices. The type of linear instability mechanism of the
primary waves is usually not important, and a non-linear primary wave can arise due to a Tollmien-Schlichting,
Kelvin-Helmholtz, Lees-Lin, or a Mack instability.

The waves resulting from one of the secondary instability mechanisms may possesses half the frequency
(subharmonic resonance) or the same frequency (fundamental resonance) as the primary waves. A comprehen-
sive description of corresponding breakdown scenarios for (incompressible) boundary layers can be found in
Refs. [10, 15].

The disturbance growth due to a secondary instability mechanism is typically very strong. For incompress-
ible flow, the primary wave is often a two-dimensional wave, since such a wave is usually most amplified. For
supersonic flow (Ma∞ ≤ 2), the onset of non-linear effects could be caused by secondary instability [fun-
damental or subharmonic resonance, see Refs. 7, 10] or oblique breakdown [7, 16]. For such a compressible
boundary-layer flow at low supersonic Mach numbers, oblique waves are most amplified, and hence the pri-
mary wave may be an oblique wave. In this case, asymmetric secondary wave arrangements can be observed,
an example is given in Ref. [9].

At higher Mach numbers, the fundamental instability may be stronger than subharmonic instability, as
found in the investigations of Refs. [17, 18]. For hypersonic flow, the primary wave is two-dimensional again,
since the Mack instability is strongest for these conditions. This will be discussed in more detail below, based
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Figure 1: Left: Maximum amplitudes of the streamwise velocity (A(1,0)
v = 10−2, A(1,±k)

v = 10−4, ∆Φ = π/4) for frozen flow [19].
The most important modes during secondary instability: mode (1, 0) (solid line), (1,±4) (dashed line) and (0, 4) (dash-dotted
line) are depicted; scaled linear results (�) are given for reference. Right: Phase velocities for disturbance waves relevant for
secondary instability (computed from the wall pressure). Mode (1, 0) (solid line), mode (1,±4) (dashed line). Linear results
(Mode (1, 0) : � , mode (1,±4) : •) are given for reference.

2.0 WEAKLY NON-LINEAR DISTURBANCE EVOLUTION

2.1 Overview

The most important modes active during secondary boundary-layer instability and their parametric dependen-
cies are examined below for fundamental resonance. The same conditions as in § 2.0 and § 3.0 of Ref. [1], case
A, are used here and in the following. Two gas models are considered: frozen flow and finite-rate chemically
reacting flow.

In the presence of a large-amplitude two-dimensional wave mode (1, 0) (solid line in figure 1, left), oblique
waves of the same frequency, modes (1,±4) given by the dashed line, are strongly amplified so that their growth
significantly exceeds that seen in the absence of mode (1, 0) (symbols in the figure). A characteristic feature of
fundamental resonance is the growth of a mode (0, 4) disturbance [10]. In the figure, such a mode (dash-dotted
line) can be seen to grow together with modes (1,±4). As the two unsteady waves fall into resonance, their
downstream evolution also synchronizes. At the start of secondary growth (Rex ' 1800), the phase speed of
the oblique waves decreases compared to the linear case (figure 1, right) and eventually also a decrease in phase
speed is seen for the primary wave (Rex ' 2100). The phase velocities shown here have been computed as
described in § 1 of Ref. [1].

It can also be observed in figure 1(left) that non-linearity destabilizes the primary wave, mode (1, 0). When
comparing the solid line and the corresponding symbols for the two-dimensional disturbance in the figure we
see that the large-amplitude wave (solid line) continues to be amplified further downstream, although this effect
is small.

In order to better illustrate the development of the flow field during secondary instability, the streamwise
evolution of velocity and thermodynamic components is inspected. Figure 2 provides an overview of the ampli-
tude evolution for five different components for the primary (left) and secondary (right) disturbance. Except for
the maximum density amplitude, all components grow strongly during the stage of secondary instability (figure
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Figure 3: Amplitude functions for mode (1, 0) at Rex=2122, all normalized by the maximum amplitude of the streamwise velocity
component. Left: Streamwise u (solid line) and wall-normal v (dotted line) velocity components. Right: pressure 5 p (dashed
line) and temperature T (dash-dotted line).
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Figure 4: Amplitude functions for mode (1,±4) atRex=2122, all normalized by the maximum amplitude of the streamwise velocity
component. Left: Streamwise u (solid line) and wall-normal v (dotted line) velocity components. Right: pressure 5 p (dashed
line) and temperature T (dash-dotted line). Linear results are given for references as small dotted lines.

STO-AVT-289 - Multiphysics phenomena analysis on boundary layer stability in hypersonic regime 3- 7





Hydrodynamic Stability of Hypersonic Chemically Reacting Boundary Layers II

Re
x

u
m

a
x

1600 2000 2400

10
­4

10
­3

Figure 6: Maximum amplitudes of the streamwise velocity (forcing with A
(1,0)
v = 10−2, A(1,±k)

v = 10−4, ∆Φ = π/4) for frozen
flow [19]. Results for modes (1,±k) with k = 1 . . . 6 (from top to bottom as indicated by the arrow).
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Figure 7: Secondary mode (1,±k) amplitudes (A(1,±k)
v = 10−4, ∆Φ = π/4) for different forcing amplitudes of the primary wave,

mode (1, 0): A(1,0)
v = 10−2 (dashed line), A(1,0)

v = 5 × 10−3 (dash-dotted line), A(1,0)
v = 2 × 10−3 (solid line). Linear results (◦)

are given for reference. Spanwise wave number coefficient k = 2 (left) and k = 4 (right).

STO-AVT-289 - Multiphysics phenomena analysis on boundary layer stability in hypersonic regime 3- 9





Hydrodynamic Stability of Hypersonic Chemically Reacting Boundary Layers II

Re
x

u
m

a
x

1600 2000 2400

10
­4

10
­3

Figure 9: Results for two different freestream temperatures (lines: T̃∞ = 350K, symbols: T̃∞ = 425K). Secondary amplification
for a frozen gas (forcing as in figure 6) of modes (1,±k), but for k = 2 (solid line,•), k = 4 (dashed line,�).

2.5 The Effect of Finite-Rate Chemical Reactions

Chemical dissociation reactions occurring mainly close to the wall in the boundary layer, as it happens for the
setup considered here, exert a similar effect as cooling at the wall or as increasing the freestream temperature as
just discussed in § 2.4 [see also Ref. 1]. Hence, we can expect a very similar effect on the secondary instability
as seen in the previous section. Indeed, almost exactly the same difference of secondary amplification rate can
be seen between the frozen and the chemically reacting flow at fixed T̃∞ = 350K (figure 10), as it occurs for
a frozen gas when the freestream temperature is increased from T̃∞ = 350K to T̃∞ = 425K (figure 9).

These findings suggest that chemical reactions directly increase the primary amplitude but hardly influence
the secondary instability mechanism itself. Hence, if the primary amplitude is the same, then secondary ampli-
fication will be the same independent of whether the flow is frozen or reacting at a finite rate. This conclusion
is expected to hold for moderately reacting flows with finite-rate reactions as they have been considered here,
but not necessarily for those in local thermodynamic equilibrium. Also, it may not be valid for setups with high
temperature in the freestream and low temperature new the wall due to wall cooling, as they are occur for blunt
bodies.

3.0 STRONGLY NON-LINEAR DISTURBANCE EVOLUTION

In order to investigate strongly non-linear effects, we only consider the case of a frozen flow. The excitation
amplitude of secondary perturbations was increased fromA

(1,±k)
v = 1×10−3 toA(1,±k)

v = 4×10−3 and further
to A(1,±k)

v = 8 × 10−3. In addition to the primary two-dimensional wave, only a single oblique disturbance
with k = 4 was forced in the cases with increased forcing amplitude.

As a result of such an increase of secondary amplitude, the secondary disturbances reach an amplitude
comparable to that of the primary perturbation (figure 11). We also observe increasingly strong streamwise
density gradients. Indirect evidence for the formation of shocklets during the strongly non-linear stage of
transition has also been found [19]. Evidence for this latter finding is based on the observation that results
could only be obtained when a numerical shock-capturing scheme had been used as the simulation would not

STO-AVT-289 - Multiphysics phenomena analysis on boundary layer stability in hypersonic regime 3- 11





Hydrodynamic Stability of Hypersonic Chemically Reacting Boundary Layers II

Re
x

u

1600 2000 2400

10
­2

10
­1

Figure 11: Overview of strongly non-linear results (A(1,0)
v = 1 × 10−2, A(1,±4)

v = 8 × 10−3) for frozen gas with shock capturing
(lines) for mode (1, 0) (solid line), modes (1,±4) (dashed line) and mode (0, 4) (dash-dotted line). Scaled weakly non-linear results
are given as dotted lines for reference.
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Figure 12: Comparison of results for A(1,±4)
v = 1 × 10−4 (dashed line), A(1,±4)

v = 4 × 10−3 (dash-dotted line), and A
(1,±4)
v =

8 × 10−3 (dash-dot-dotted line): mode (1, 0) (left) and mode (1,±4) (right). In the right figure, results in the absence of a two-
dimensional wave are given for reference (symbols).
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